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Figure 1

Objective

* COVID-19 spreads predominantly through aerosols and droplets via the air
* Ease of access to lower fidelity software has left CFD center stage

* Demonstrate the future potential merits of “multi-fidelity” CFD with regards
to the COVID-19 pandemic and future
* |Is low fidelity CFD software designed for higher velocity flows able to be
utilized in modeling lower velocity respiratory events?
* Ability to streamline decision-making process regarding safety guidelines
in urgent times, when the ability to wait for higher fidelity results is not
an option

Figure 1: “Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19 |
Infectious Diseases | JAMA | JAMA Network.” https://jamanetwork.com/journals/jama/fullarticle/2763852 (accessed Jan. 15, 2021).

[1] G. Pascarella et al., “COVID-19 diagnosis and management: a comprehensive review,” Journal of Internal Medicine, vol. 288, no. 2, pp. 192—

206, 2020, doi: 10.1111/joim.13091.


https://jamanetwork.com/journals/jama/fullarticle/2763852

Background: Transmission, Structure and Behavior

* Airborne transmission - two
infection mechanisms:

e ‘Close’ infection due to large

dro pIets Red blood cell
* ‘Distant’ infection due to T .
small droplets fhered  Coronavinis  gactaria

* Most droplets expelled evaporate
within a few seconds to form
droplet nuclei (aerosols)

e Suspended in air for hours

* Half-life of airborne
virions/viral load necessary
for contraction is still under
debate

Figure 2

Figure 2: N. Zhu et al., “A Novel Coronavirus from Patients with Pneumonia in China, 2019,” N Engl J Med, vol. 382, no. 8, pp. 727-733, Feb.
2020, doi: 10.1056/NEJM0a2001017.

[2] G. Seminara, B. Carli, G. Forni, S. Fuzzi, A. Mazzino, and A. Rinaldo, “Biological fluiddynamics of airborne COVID-19 infection,” Rend Lincei
Sci Fis Nat, pp. 1-33, Aug. 2020,52 doi: 10.1007/s12210-020-00938-2.



https://doi.org/10.1056/NEJMoa2001017

Computational Fluid
Dynamic Methods

* Computational fluid dynamics (CFD) is a
division of fluid mechanics that utilizes
numerical analysis and data structures to
evaluate and resolve problems involving fluid
flows

e Reynolds-Averaging Navier Stokes (RANS)
e Large Eddy Simulation (LES)
* Direct Numerical Simulation (DNS)
* Low Fidelity vs. High Fidelity
* RANS: ~ 13 hours
 DNS: ~ 200+hours
* For only 11.4s of flow time!

Figure 3

Figure 3: DolfynNet, Von Karman vortex street (laminar, temperature), Re = 250. 2010.



High Fidelity Further Explained

* Yales2 is a High Fidelity Large Eddy
Simulation (HFLES)

* Essentially simulates the larger
eddies that contribute to most

to the energy of turbulence

* The contribution of smaller
scales is also modeled

* Higher demands...

* Conservation of energy
* Multiphysics
05 075 1.00
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[3] High Fidelity CFD against COVID-19, Y. Dubief, et al



RANS Further Explained

* Reynolds Stress arises from Reynolds averaging process
« RANS- EQ: (1)
* Must be solved to close the equations
* Two most common methods
1. Boussinesq Hypothesis (EQ: 2)
* Calculate dynamic eddy viscosity ( u;)
2. Reynolds Stress Model (RSM)
e Solves transport equations, greater CPU cost

d(pU) - , e 9 r -
5 TV (pUU) = =Vp+ V- [(VU + (VU)")] +pg—V (WV U )) _w (1)
Reynolds-Stress

o a2 2 :
—pU'U' = p, (VU + (VU)") — ?/)A?[ — —g(V -U)I (2)
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Simulation Methodology

Nose-Breathing Waveform - Exhalation Only

* Simulate nose-breathing as closely as possible .
* 8 breath cycles, exhalation only
* Os - 1.8s exhalation )
e 1.8s—2.7s 0 velocity (inhalation) T
e 2.7s—2.85s 0 velocity (rest) 2,
* Aerosols injected for first four breaths ;»
* Four breaths each given 11.4s to evolve Z
* Parameters of interest s
* XYZ Position 05
* XYZ Velocity
. 5 ] 4

Species Transport: Air and Steam
* Nose Jet: 308.15 K, 0.012 mass fraction H,0

00 17 34 51

Figure 8: Nose-Breathing Waveform

[5] Zhang, G. Guo, C. Zhu, Z. Ji, and C.-H. Lin, “Transport and trajectory of cough-induced bimodal
aerosol in an air-conditioned space,” Indoor and Built Environment, p. 1420326X20941166, Jul. 2020,
doi: 10.1177/1420326X20941166.

6.8

8.6

||

L

e

=

10.3 12.0 13.7 154 17.1 188 20.5 22.2

Time (s)



Physical Model

* Single cylinder sized and
oriented to represent a

human nostril |
e Height: 1.6m /\

 Enclosure that allows for full /\\

dispersion
14512 m3

b 22°

Units: mm

[3] Schriever, Valentin & Hummel, Thomas & Lundstrém, Johan & Freiherr, Jessica. (2012). Size of nostril opening as a measure of
intranasal volume. Physiology & behavior. 110-111. 10.1016/j.physbeh.2012.12.007.
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Computational Domain
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Grid Sensitivity and Timestep Check

G d t t Grid Sensitivity: XYZ Position of Aerosols at 11.4s Grid Sensitivity: XYZ Velocity of Aerosols at 11.4s
* Qaria sensitauvity e -
P i et e T s . 0.025 — 3
performed to 0.20 e
ensure . o’ =
) : _ 0.020 :
Effe ctiveness Of . z':ea"':“f;w” (m) at 11.4s -+~ X-Mean-Velocity (m/s) at 11.4s
0.10 -Mean-Position (m) at 11.4s H -+- Y-Mean-Velocity (m/s) at 11.4s
mes h = Z-Mean-Position (m) at 11.4s ) --+- Z-Mean-Velocity (m/s) at 11.4s
= £0.015
* Timestep g 2
comparison of < 0.00 2 5,010
0.0001 and 0.1 was = .. >
also performed to A
check for major e
differences ~0.15 0.000 R N St e .

between time step 1 ; : ; i ; : :

SIZES Number of Finite Volumes (millions) le Number of Finite Volumes (millions)



Numerical Methods

* Solver: Pressure Based Spatial Discretization:

« Velocity Formation: Absolute * Gradient: Least Squares Cell Based
* Pressure: PRESTO!

Transient Formulation: 15t Order Implicit
Time Step Size: 0.0285

* Time: Transient
* Gravity: ON -9.8 m/s?
* Species Transport Model: ON

* Discrete Phase Model: ON Time Step Number: 700
Max Iterations per Time Step: 75

* Pressure-Velocity Coupling: Coupled

Flow Courant Number: 200



Numerical Methods Cont.
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. Y
Time Convection Diffusion Sources and Sinks

* Turbulence model: Standard K-Epsilon
* Free shear flows, small pressure gradients, wall action not of concern
* Transport EQs for kinetic energy (3) and turbulent dissipation rate (4)

[4] “ANSYS FLUENT 12.0 Theory Guide - 4.5.1 Standard - Model.”
https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node66.htm (accessed Dec. 02, 2020).



Initial Conditions

Walls

* Adiabatic

* No Slip

* Trap DPM condition
Velocity Inlet:

* Bottom of cylinder

* Escape DPM condition

* UDF Profile
Injection Surface

* Bottom of cylinder
Ambient Temp: 293.15K
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Droplet Tracking Model

e ANSYS Fluent Discrete Phase Model

(DPM)
* One-Way Coupling

* Aerosol Properties

Inert H,O particles

Temperature: 300K

* Spherical Drag Law

e Discrete Random Walk Model

Breath Number

Duration of Total Breath Cycle (s)

Particles Injected?

Diameter: 0.1 micron

Mass Flow Rate: 9.40e-15 kg/s

Follow velocity profile for timing

1 Os - 2.85s Yes (0s -1.8s)

2 2.8785s - 5.7s Yes (2.8785s - 4.6455s)
3 5.7285s - 8.55s Yes (5.7285s - 7.4955s)
1 8.5785s - 11.4s Yes ( 8.5785s - 10.3455s)
5 11.4285s - 14.25s No

6 14.2785s - 17.1s No

i 17.1285s - 19.95 s No

8 19.9785s - 22.8s No




Residuals
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Aerosol Dispersion —11.4s - RANS

Particle Dispersion of Breaths 1-4 at Time = 11.4s

* Nostril located at (0,0,0)

* Residence Time: Time passed
since the particle was released

* |nitial downward trajectory
until y-velocity dissipates and
buoyant forces prevail

(W) SIXY A

00

04 02

Figure 9: XYZ Position of Aerosols at 11.4s
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Qualitative Observations — 11.4s Cont.

Particle Dispersion of Breaths 1-4 at Time = 11.4s
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Qualitative Observations — 19.95s - RANS

* Rise of particles
significant distance
above (0,0,0)

* Aerosols are not residing

near the nostril, but are
continuing to rise
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Qualitative Observations — 19.95s Cont.

Particle Dispersion of Breaths 1-4 at Time = 19.95s Particle Dispersion of Breaths 1-4 at Time = 19.95s
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Breath Trajectories

* 3D plot showing trajectories of
mean XYZ positions for breaths 1-4

* The figure to the right and figures
that will follow this slide were all
calculated using the mean of ¢,
where ¢ is the variable of interest.

* The mean of ¢ was taken for all the
particles of each breath at a specific
point in time.

(w) SIXyY A

= = RANS Breath 1

Breath Trajectories — - RANS Breath 2
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Mean X and Y Position VALES? Comparison

Mean X Position (m) Of Breaths 1-4 versus Time a5 Mean Y Position (m) Of Breaths 1-4 versus Time
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 Mean X Position: First breath does not travel as far as 2,3,4 but alludes to equilibrium
 Mean Y Position: Same trend as X-position but greater difference in values
* ANSYS to Yales2: Slightly greater -Y distance traveled,



Mean X and Y Velocity
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Inhalation Risk Zone: 3D Binned Aerosols

* Aerosol behavior directly affects
transmission

* Concentration closest to nose and
mouth can be considered highest
inhalation risk area 7

e At 11.4s: 83,397 of 1,006,188 aerosols, (el
or 8.288 % lay within the region

At 19.95s: 73,044 of 1,006,184 aerosols,
or 7.260% lay within the region

] 04m
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: 11.4s - RANS

Inhalation Zone
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19.95s - RANS

Inhalation Zone
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X, Y and Z Axis - Binned Aerosols - RANS

Number of Particles according to X Position Location at Time = 11.4s

. 114s
. 199s

* Split up by axis allows for deeper N—
analysis of binned aerosols

300000 -

* Aerosols show that they
continue to travel in x-direction S 250000
past 19.95 seconds —
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50000 -
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X, Y and Z Axis - Binned Aerosols - RANS

* Aerosols have clearly risen at
11.4s (red) as they do not
remain at the lower elevations

e At 19.95s (blue) the aerosols
have continued to rise up to
0.6m above the release point

Number of Particles
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X, Y and Z Axis - Binned Aerosols - RANS

Number of Particles according to Z Position Location at Time = 11.4s and 19.95s
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* Aerosols remain evenly
distributed along z-axis S
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is applied to the nostril £ 300000
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Conclusions

 The COVID-19 pandemic stands as an example where early and accurate
characterization of dispersion behavior could help define effective safety guidelines.
* The role of CFD in risk evaluation
* Define areas of increased aerosol density which can be correlated to locations of
higher risk
* The results show that continued breathing affects the behavior of aerosols as their
behavior adjusts breath to breath
 Numerous breaths must be simulated for greater accuracy
e (Quantitative differences of meaningful magnitude present themselves between the
ANSYS RANS and YALES2 comparison
 RANS ability to reproduce similar qualitative results to the high-fidelity simulation
suggests value in continuing to pursue the use of multi-fidelity CFD with regards to
low velocity flow situations



Future Work

 Overall:

e Simulate a greater number of breaths
* Compare ANSYS and Yales2 with identical mesh/setup
* Fine-tune RANS controls
* Physical Domain:
* Include a human body and head to account for any possible effects on the flow
* Adaptive mesh refinement

 Methodology:

* Allow nose breath to develop within a geometry that represents a nostril before
entering the domain

* Introduce small amounts of turbulence to see how the aerosol dispersion is affected

 Introduce other disruptive factors: heat commonly found indoors that may have
convective effects, such as humans or light sources
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