

MATLAB PORTFOLIO
Bella Barbera

December 14th 2017
Section A

Harrison Davis, Lianna Klinger, Brooke Bendarke, Callan Kennedy

Homework 7_8

Overview: ​To analyze a dataset of strings embedded into an RGB image file, where each character
represents an intensity measurement of that pixel’s blue signal. In ​part one​, the file black_white is read
into the script and its size and midpoints are calculated and stored as variables so that the image data can
be stored in four different quadrants as variables. In ​part two​ the four quadrant variables and their length
are defined. The for loop uses a subplot to create a 2by2 plot of each quadrant, where imshow displays
each quadrant. In ​part three​ qstr is sorts the cell array into alphabetical order, and uses a FOR loop to
create a table that calculates the mean for each quadrant, the maximum possible mean is also found. In
part four ​the file secrets is read into the script, and a variable containing the blue layer image data is
defined. ***** In ​part five ​creates a cell array that is split by strtok, and put into a while loop that
continues to split up the vector into tokens and appends them to the cell array votes. In ​part six​ four
variable are created that contain information about the strings (total, unique). A FOR loop is used
compare two strings two determine if they contain the same city, a second for loop is used to create a
table of the tallies. In ​part seven ​a new table is created using a FOR loop that is sorted numerically.
Skills Used:

- Using while and for loops
- Cell arrays, string concatenation, character data stored numerically
- End keyword used as an index
- Use of eval, char, strtok, max, size, sort, unique, imread, imshow, subplot, floor, sprintf or

num2str

% Bella Barbera

%Secrets

%November 5 2017

%% Housekeeping

clc

clearvars

close all

%% Part One

blackwhite = imread(​'black_white.bmp' ​); ​%reads image data into
variable: blackwhite

[x,y] = size(blackwhite); ​%size determines both dimensions of matrix
blackwhite and stores them in variables: x and y

p1 = floor(x/2); ​% p1 is a variable that stores the midpoint of the x
dimensions. Floor rounds to minus infinity.

p2 = floor(y/2); ​% p2 is a variable that stores the midpoint of the y
dimension. Floor rounds to minus infinity.

Q1 = blackwhite(1:p1,p2+1:end); ​%Q1 is a variable that holds one
quarter of the image data

Q2 = blackwhite(1:p1,1:p2); ​%Q2 is a variable that holds one quarter
of the image data

Q3 = blackwhite(p1+1:end,1:p2); ​%Q3 is a variable that holds one
quarter of the image data

Q4 = blackwhite(p1+1:end,p2+1:end); ​%Q4 is a variable that holds one
quarter of the image data

%% Part Two

qstr = { ​'Q2','Q1','Q3','Q4' ​}; ​% qstr is a variable that is a cell
array of the strings of the quadrants 1-4

l = length(qstr); ​%l is the variable for the length of the cell array

for ​ k = 1:l ​% k is the loop iterator variable. 1:L means 1 through
the L which is through each quadrant (a total of 4)

 subplot(2,2,k); ​%subplot(m,n,p) breaks the figure window into and
m-by-n (in this case 2 by 2) matrix of small axes, selects the pth

(in this case k) axes for the current plot

 qvar = [​'imshow(' ​ qstr{k} ​')' ​]; ​% qvar is a variable that is a
string. Imshow displays qstr{k} which indexes into each string

showing each quadrant.

 eval(qvar) ​% executes qvar in text
 num2str(k); ​% ***converts numbers to characters
 title([​'Quadrant ' ​ num2str(qstr{k}(2))]) ​%Creates title above
each quadrant of what quadrant number it is by extracting the second

character of each Quadrant in qstr (ex: 'Q1' =1 'Q2' =2)

end

%% Part Three

b = sort(qstr); ​%sort updates the cell array into alphabetical
listing

e=zeros(1,l); ​% ***using the length variable, a vector of zeros is
created the same length of the string, which will store the mean of

its corresponding quadrant

fprintf(​'%45s\n\n','Mean Signal Intensity by Quadrant' ​) ​% Title for
table and headers

fprintf(​'%20s%20s\n','Quad','Mean',...
 '------','-----' ​)
for ​ k = 1:l ​%creating table body (1:L)
 mstr = ['mean(' b{k} '(:))']; ​%defining a string (mstr) that
represents the quadrants mean calculation that uses k to index into

your cell array (b)

 e(k) = eval(mstr); ​%executes the matlab expression (mstr) in text
 fprintf(​'%19s%20.2f\n',b{k},e(k) ​) ​%using k to index into cell
array and means vector to produce table

end

s = max(blackwhite(:)); ​%finds maximum possible numerical value (255)
the out of all

[V,W] = max(e); ​%finds maximum quadrant and quadrant mean

fprintf(​'Quadrant %d has the largest mean signal intensity: %0.0f out
of %d.\n' ​,W,V,s) ​%W is max quadrant, V is max quadrant mean, s (255)

%% Part Four

secrts = imread(​'secret.bmp' ​); ​%reading data of secrets into variable
secrets

blue = secrts(:,:,3); ​%variable containing the blue layer image data
for quadrant 1 (RGB = :,:3) blue

Q1B = blue(1:p1,p2+1:end); ​%variable containing blue layer image data
of Q1

str=[]; ​%setting empty vector as string
ind=1; ​%setting index
ch = ​'A' ​; ​%

while ​ ch ~= ​'E' ​ ​%ends when the 'E' is reached which is at the end of
the data

 ch = char(Q1B(ind)); ​%Since Q1B is a number it needs to be
converted to a number so it can be tacked onto the vector of

characters

 ind = ind + 1;

 str = [str ch];

End

%% Part Five

votes = cell(1); ​%creating cell array
[votes{1},rest] = strtok(str); ​%splits vector of characters into a
cell array of meaningful string values; [TOKEN,REMAIN] = strtok(STR)

while ​ ~isempty(rest) ​%while loop that continues to parse the 'rest'
into tokens (strings) ~(while rest is not empty keep going)

 [votes{1+end},rest] = strtok(rest); ​%appending each string to the
cell array votes

end

votes = votes(1:end-1); ​%updating votes to include only elements 1
through end -1

%% Part Six

citycell = unique(votes); ​%**creates cell array with no repetitions
in sorted order

totalstrings = length(votes); ​%variable for total number of strings
uniquestrings = length(citycell); ​%variable for the number of unique
strings

g = zeros(1,uniquestrings); ​%g is a vector of zeros whose length
matches the number of unique strings

for ​ c = 1:totalstrings ​% loop that is bound by the total number of
strings

 current = votes{c}; ​%index into the votes cell array
 temp = strcmp(current,citycell); ​%strcmp compares (1,2) and
returns a logical value 1 if they are the same and 0 if they are not

 g = g + temp; ​%updating tally vector by adding its current value
to temp

end

fprintf(​'%-40s\n\n','Unique Values and Tallies' ​) ​%title for table
fprintf(​'%-20s%20s\n','Unique','Tallies' ​, ​... ​ ​%headers for table
 ​'------' ​, ​'-----' ​)
for ​ c = 1:uniquestrings ​%for loop to create table of the unique
values and their tallies

 fprintf(​'%-20s%20d\n' ​,citycell{c},g(c)) ​%index into the cell
array of unique values and the corresponding vector of tallies

end

%% Part Seven

[M,N] = sort(g); ​%creates the variables M -a numerically sorted tally
vector, and N the order in which these sorted values appear in the

original vector

sorted = citycell(N); ​%create new cell array of unique strings
indexing into original cell array using N

fprintf(​'%-40s\n\n','Sorted Table' ​) ​%table headers
fprintf(​'%-20s%20s\n','Cities','Number of Votes' ​, ​... ​ ​%table headers
 ​'------' ​, ​'-----' ​)
for ​ c = 1:uniquestrings ​%creates table of values in new sorted order
 fprintf(​'%-20s%20d\n' ​,sorted{c},M(c)) ​%puts values in increasing
order of number of votes

End

IMAGES AND TABLES (HW7_8)

Black_white.bmp
Part Two: Subplot of Image Data in Quadrant

Part

Three: Mean Signal Intensity by Quadrant

Table

Part Six: Table of Unique Values and Tallies
Part Seven: Table of Sorted Unique Values and Tallies

Homework 9
Overview: ​Imports data from two data files, pumps and deaths, and use them to recreate the
point map and tally the fatalities according to the nearest pump. In ​part one​ deaths and pumps are
loaded into the script and a while loop is used to create two variable that contain two columns of
doubles. In ​part two​ a figure is created that plots the deaths and pumps. In ​part three ​three
variables are created for the number of pumps, deaths, and a vector of zeros, a for loop is then
used to calculated distances between the pumps and fatalities. In ​part four ​the minimum distance
between from each fatality to a pump is calculated and a FOR loop is used to step through each
fatality, the tallies are then recorded and sorted in ascending order. In ​part five ​a figure is created
that plots all the pumps (as a number 1-13) and fatalities (as a number of the pump they are
closest to). In ​part six ​all the pumps and deaths are re-plotted, deaths as circles whos size are
based on the number of fatalities closest to the pump. In ​part seven​ a file is created that stores
two tables each that contain the pumps and the number of cases closest to them, one of them in
order of pump number and the other in descending number of cases.
Skills Used:

- WHILE and FOR loops
- Vectorizing plots and distance calculations
- End keyword used as an index
- [~] used to indicate “don’t care”

- Use of figure, clf, plot, text, zeros, cell2mat, find, strdouble, sort, min, axis, grid, xlabel,
ylabel, title, legend, fopen, fclose, feof, fgetl, textscan, strtok, input, fprintf

% Bella Barbera

% November 8th, 2017

% Johnsnow

clc

clearvars

close ​all

%% Part One

fid = fopen(​'pumps.txt' ​) ​% Opening pumps.txt into a variable fid
pumps = textscan(fid, ​'%f,%f','headerlines' ​,1); ​%Creating a variable
and opening pumps (fid) in the proper format

fclose(fid) ​%close file
pumps = cell2mat(pumps) ​%converts pumps to a two-column matrix of
doubles

fid = fopen(​'deaths.txt' ​) ​%Opening deaths into variable fid
deaths = []; ​%create empty vector to initialize deaths

while ​ ~feof(fid) ​%read into each data line until the end of the file
is reached

 line = fgetl(fid); ​%creates variable 'line' that returns the next
file line

 [x,y] = strtok(line,','); ​%strtok assigns x and y variables that
token the selected line

 x = str2double(x); ​%converts each variable from string to double
 y = str2double(y); ​%converts each variable from string to double
 deaths(end+1,:) = [x,y]; ​%append a 1x2 vector comprised of x and
y to the next row of the deaths matrix

 fprintf(​'%s\n' ​,line) %new line
end

fclose(fid) ​%close file

%% Part Two

figure(1) ​%clear figure
clf

plot(deaths(:,1),deaths(:,2), ​'rx' ​) ​%plotting x and y (all of column
1/2 of deaths data)

hold ​on ​ ​%add to plot whats below
plot(pumps, ​'ko' ​) ​%plot all pumps data

title(​'John Snow''s Cholera Map, 1854' ​) ​%creating titles/setting axes
axis([0 24 0 20])

xlabel(​'Easting' ​)
ylabel(​'Northing' ​)
grid ​ON
legend(​' Deaths' ​, ​' Pumps' ​)

%% Part Three

numberpumps = length(pumps); ​%variable for the number of pumps
numberdeaths = size(deaths,1); ​%variable for the number of deaths

z = zeros(numberdeaths,numberpumps); ​%creating a vector of zeros with
as many rows as deaths, and as many columns as pumps

for ​ k = 1:numberpumps ​% FOR loop to compute distance from each pump
to each fatality (indexing thru one pump at a time)

 dx = pumps(k,1) - deaths(:,1); ​%one pump (x) to all fatalities
 dy = pumps(k,2) - deaths(:,2); ​%one pump (y) to all fatalities
 z(:,k) = sqrt((dx.^2)+(dy.^2)); ​ %pythagorean formula for
calculating distance from each pump to all fatalities

end

%% Part Four

[~,closest_pump] = min(z,[],2); ​%identifying the smallest distance
between each pump and fatality (each fatality to pump)

pumptally = zeros(numberpumps,1); ​%create a vector of zeros for the
number of pump tallies that is the length of the number of pumps

for ​ k = 1:numberdeaths ​%FOR loop stepping thru closest pumps thru #
of deaths

 set_pump = closest_pump(k); ​%step through closest_pump each of
whose entries represents which pump is closest to that row's fatality

 pumptally(set_pump) = pumptally(set_pump) + 1; ​%keeping tally of
which pump has the most fatalities closest to it

end

[sorted_tally,order] = sort(pumptally); ​% sort tallies in ascending
order

%% Part Five

figure(2),clf ​%clear figure and create second figure

hold ​on ​ ​%add to plot
grid ​on ​ ​%turn on grid lines
axis([8 20 4 20]) ​%set axes

% plotting pumps

for ​ k = 1:numberpumps ​%For loop through all the pumps
 text(pumps(k,1),pumps(k,2),num2str(k), ​'color' ​, ​'k' ​, ​'fontsize' ​,12)
%adding text to data points for each pump (points = numbers)

end

%plotting deaths

for ​ k = 1:numberdeaths ​%for loop through all deaths
text(deaths(k,1),deaths(k,2),num2str(closest_pump(k)), ​'color' ​, ​'r' ​, ​'fo
ntsize' ​,12) ​%also create text data points but also index into
closest_pump for the annotation value

end

%labels

title(​'John Snow''s Cholera map,1854' ​)
xlabel(​'Easting' ​)
ylabel(​'Northing' ​)

text(15.5,16, ​'\it Fatality''s Nearest Pump #' ​, ​'color' ​,
'r' ​, ​'linewidth' ​,10)
text(9,18, ​'\it Pump #' ​, ​'color' ​, ​'k' ​, ​'linewidth' ​,10),

%% Part Six

figure(3),clf ​%create third figure, clear previous
hold ​on ​ ​%add to graph
grid ​on ​ ​%grid on
axis([8 20 4 20]) ​%set axes
%plotting deaths

plot(deaths(:,1),deaths(:,2), ​'rx' ​, ​'linewidth' ​,1)

%plotting pumps

for ​ k = 1:numberpumps
 sz = find(sorted_tally == pumptally(k)); ​%returns nonzero entries
of sorted_tally (whether or not they are equal)

plot(pumps(k,1),pumps(k,2), ​'bo' ​, ​'markersize' ​,sz(1)*2, ​'linewidth' ​,1)
%plot blue circles (pumps) with their number of tallies

text(pumps(k,1),pumps(k,2),num2str(pumptally(k)), ​'color' ​, ​'k' ​, ​'fontsiz
e' ​,sz(1)+10, ​'linewidth' ​,2) ​%display the pumps point as a number that
is the number of tallies

end

%labels

title(​'John Snow''s Cholera map,1854' ​)
xlabel(​'Easting' ​)

ylabel(​'Northing' ​)
legend(​'Pumps' ​, ​'Deaths' ​)

%% Part Seven

prompt = ​'Insert name: ' ​; ​%prompts user to insert name
name = input(prompt, ​'s' ​); ​%^
datestr = date; % ​displays date

%display date without dashes

datestr(datestr== ​'-' ​) = [];

fname = [​'report_' ​,datestr, ​'.txt' ​]; ​%names the file with report #,
date, and as a .txt file

fid = fopen(fname, ​'w' ​); ​%opens file with data below

%fprintf statements for tallies and proximal fatalities

fprintf(fid, ​'Analysis of John Snow''s 1854 Cholera Data\n' ​);
fprintf(fid, ​'Produced by %s on %s\n\n' ​,name, datestr);
fprintf(fid, ​'%50s' ​, ​'Tallies: Pumps and Their Proximal Fatalities' ​);
fprintf(fid, ​'\n' ​);
fprintf(fid, ​'%10s%15s%15s%15s\n' ​, ​'Pump #' ​, ​'Easting' ​, ​'Northing' ​, ​'Num
Cases' ​);
fprintf(fid, ​'%10s%15s%15s%15s\n' ​, ​'------' ​, ​'-------' ​, ​'---------' ​, ​'----
-----' ​);
for ​ k = 1:numberpumps ​%data for tally table
fprintf(fid, ​'%8d%18.5f%15.5f%12d\n' ​,k,pumps(k,1),pumps(k,2),pumptally
(k));

end

%fprintf statements for sorted tallies and proximal fatalities (by

pump #)

fprintf(fid, ​'\n' ​);
fprintf(fid, ​'%55s','Sorted Tallies: Pumps and Their Proximal
Fatalities' ​);
fprintf(fid, ​'\n' ​);
fprintf(fid, ​'%10s%15s%15s%15s\n' ​, ​'Pump #' ​, ​'Easting' ​, ​'Northing' ​, ​'Num
Cases' ​);
fprintf(fid, ​'%10s%15s%15s%15s\n' ​, ​'------' ​, ​'-------' ​, ​'---------' ​, ​'----
-----' ​);

for ​ k = numberpumps:-1:1 ​%data for sorted tally table (by number of
cases)

fprintf(fid, ​'%8d%18.5f%15.5f%12d\n' ​,order(k),pumps(order(k),1),pumps(
order(k),2),sorted_tally(k));

end

TABLES AND IMAGES (HW 9)

Homework 14
Overview: ​In ​part one​ of homework 14 the raw data, means, and standard deviation are
displayed in a table. In a conclusion statement the target diameter is displayed, which line
diameters run closer to the target, and which line diameters are less variable are displayed. In
part two​ (handedness) handtime.dat data is imported and used to create a graph that shows left
versus right handedness (percentage measured) based on time. Two lines of best fits for both left
and right handed people are also calculated and displayed. In ​part three ​two rosters are read into
the script and used to create two functions that create a table of member vs. tension. The
polynomials are then solved and plotted.
Skills: ​polyfit, Polyval, polyder, Diff, ezplot, solve, struct

% HW 14 Part 1

% November 15th,2017

% Bella Barbera

clc;

clearvars;

close ​all
%% Part 1

% Storing Raw Measurements

prod_AB = [15.94 15.98 15.94 16.16 15.86 15.86 15.90 15.88

 15.96 15.94 16.02 16.10 15.92 16.00 15.96 16.02]; ​%creates
a variable that stores the measurements in a 2x8 matrix

% Mean and Standard Deviation

MEAN = mean(prod_AB,2); ​%computes both means of the above data
STD = std(prod_AB,0,2); ​%returns the standard deviation
lines = { ​'A' ​ , ​'B' ​}; ​%sotres production line in a 1x2 cell array

% Name, Date and Table of Raw Data

fprintf(​'QA Sampling results for Lines A and B\n' ​)
name = ​'Bella Barbera' ​;
fprintf(​'%10s\n%10s\n\n' ​,name,date)
fprintf(​'%10s\n' ​, ​'/*Raw Data*/' ​)

for ​ k = 1:length(lines) ​%For loop using k (iterator variable) to
index into the cell array

 fprintf(​'%10.2f' ​,prod_AB(k,:)) ​%print all eight measurements
 fprintf(​'\n' ​)
end

% Summary of Statistics

fprintf(​'\n%10s\n' ​, ​'/*Summary Stats*/' ​) ​% Titles/display
fprintf(​'%20s%10s\n' ​, ​'A' ​, ​'B' ​)
fprintf(​'%22s%10s\n' ​, ​'-----' ​, ​'-----' ​)
fprintf(​'%s%13.2f%10.2f' ​, ​'Means (mm)' ​, MEAN(1), MEAN(2))
fprintf(​'\n%10s%13.2f%10.2f' ​, ​'SD(mm)' ​, STD(1), STD(2))

% Target

TARGET = 16;

delta = abs(MEAN-TARGET); ​%compute delta (variable)

closer = find(delta == min(delta)); ​%identify which line's mean is
closer to target

precision = find(delta == min(delta)); ​%identify which standard
deviation is smaller

fprintf(​'\n\n/*Conclusion*/' ​) ​%display title

fprintf(​'\nTarget Diameter = %.2f mm' ​, TARGET) ​%display target number

fprintf(​'\nOn average, Line %c diameters run closer to target. \nLine
%c diameters are less variable.' ​,lines{closer},lines{precision})
%display which line is closer to target/are less variable

% Handedness

% November 15th, 2017

% Bella Barbera

clc;

clearvars;

close ​all
%% Part 1 - Acquire and parse the data

fid = fopen(​'handtime.dat' ​, ​'r' ​); ​% Loading the file into the script
handtime = textscan(fid, ​'%18c%d%d%f' ​); ​%assigning contents of file to
the target variable (handtime)

% Assignment statements for columns of handtime.dat

period = handtime{1};

periodnum = handtime{2};

handedness = handtime{3};

count = handtime{4};

%% Part 2 - Aggregate the tallies

matrix = [count(1:2:length(count)) count(2:2:length(count))]; ​%
matrix that contains original count values

matrix = [matrix(:,1) matrix(:,2) sum(matrix')']; ​% matrix of right,
left and sum

percent_right = matrix(:,1)./matrix(:,3).*100; ​% calculate right hand
percentage

percent_left = matrix(:,2)./matrix(:,3).*100; ​%calculate left hand
percentage

%% Part 3 - Plot the Data

figure(1) ​%create figure
hold ​on ​ ​%add to figure

period = period(1:2:end,:); ​%extract the period names from cell array
producing a matrix of characters

period = cellstr(period); ​% use cellstr to turn matrix back into cell
array of strings

labels = period; ​%labels = new matrix removing duplicate period names
x = [1:length(period)];

x = x';

xlim([0 23])

% Plotting

plot(percent_right,'rx','linewidth',1) %plotting percent right

plot(percent_left,'k+','linewidth',1) %plotting percent left

% Coeffecients of line of best fit for right hand

coeff_right = polyfit(x,percent_right,1);

best_r = polyval(coeff_right,x);

plot(x,best_r, ​'r--' ​)

% Coeffcients of line of best fit for left hand

coeff_left = polyfit(x,percent_left,1);

best_l = polyval(coeff_left,x);

plot(x,best_l, ​'k--' ​)

set(gca, ​'xtick' ​,x, ​'xticklabel' ​,labels, ​'xticklabelrotation' ​,-45) ​%sets
value of the specified property for the graphics

% Titles

title(​'Left- and Right-Handness of Artists through the Ages' ​)
ylabel(​'Percent of Population (%)' ​)
legend(​'Percent Right' ​, ​'Percent Left' ​, ​'location' ​, ​'east' ​)

if ​ coeff_right(2) >= 0
 sign = ​'+' ​;
else

 sign = ​'-' ​;
end

% Equations and plotting

equation_right = sprintf(​'y = %.1fx %c %.1f' ​, coeff_right(1), sign,
coeff_right(2));

text(15,80, equation_right, ​'color' ​, ​'red' ​, ​'fontsize' ​,12)

if ​ coeff_left(2) >= 0
 sign = ​'+' ​;
else

 sign = ​'-' ​;
end

equation_left = sprintf(​'y = %.1fx %c %.1f' ​, coeff_left(1), sign,
coeff_left(2));

text(15,20, equation_left, ​'color' ​, ​'black' ​, ​'fontsize' ​,12)

% HW 14 Part 3

% November 15th,2017

% Bella Barbera

clc;

clearvars;

close ​all

%% Section 1 - Set Operations

% Importing the data from each roster file

A = importdata(​'rosterA.xlsx' ​);
B = importdata(​'rosterB.xlsx' ​);

% Indexing for columns

classA = A(2:end,1);

classB = B(2:end,1);

degreesA = A(2:end,2);

degreesB = B(2:end,2);

majorsA = A(2:end,3);

majorsB = B(2:end,3);

% Set functions

classAandB = intersect(classA,classB) ​%intersect returns the values
common to the two vectors with no repititions

degreesAnotB = setdiff(degreesA,degreesB) ​%returns the values in A
that are not in B with no repititions

majorsAorB = union(majorsA,majorsB) ​%reutrns the combined values of
the two vectors with no repititions

classnotboth = setxor(classA,classB) ​%returns the values that are not
in the intersection of A and B with no repititions

%% Section 2 - Solve Systems of Linear Equations

% Assignment statements for f1 and f2

f1 = 1000;

f2 = 5000;

% Coefficient a defined

coeff_a = [.5 1 0 0 0 0 0

 .866 0 0 0 0 0 0

 -.5 0 .5 1 0 0 0

 .866 0 .866 0 0 0 0

 0 -1 -.5 0 .5 1 0

 0 0 .866 0 .866 0 0

 0 0 0 -1 -.5 0 .5];

% Constant b defined

const_b = [f1 -.433*f1-.5*f2 -f1 0 0 f2 0]';

tension = coeff_a\const_b; %computing the tensions vector x

fprintf(​'%8s%15s\n' ​, ​'Member' ​, ​'Tension(N)' ​,... ​%titles
 '------', '----------')

fprintf(​'%5d%17.2f\n' ​,[1:length(tension);tension']) ​%first row =
integers from 1 to the lengh of x and second row = values of x

%% Section 3 - Attaway Chap 14, Exercise 35 solve and subs

% Assigning syms to be solved

syms ​x y z

% Setting equations to be solved

r = ​solve ​(2*x + 2*y + z == 2,y + 2*z == 1,x + y + 3*z == 3);

% Displaying all three roots (answers)

disp([r.x,r.y,r.z])

% Anonymous function

f1 = @(x,y,z) (2*x + 2*y + z);

% Checking the answers (that the result does =2)

check = subs(f1,r);

% Coefficients

A = [2 2 1; 0 1 2; 1 1 3];

% Matrix of solutions (matrix multiplication)

b = [2 1 3]';

x = A\b

%% Section 4 - Polynomials and Calculus

clc

% Define anonymous function

f = @(x) (2*x.^3 - x.^2 + 4*x -5);

% Graph of f

ezplot(f) ​%calling ezplot with f as only input argument
hold ​on ​ ​%add to graph

% Marking the points

plot([2,5],[f(2),f(5)], ​'rx' ​, ​'markersize' ​,20, ​'linewidth' ​,1)

% Coefficient vectors of f(x)

P = [2 -1 4 -5];

% Value of degree with polyval

f(5) == polyval(P,5) ​%polyval returns the value of a polynomial
evaluated at 5

% Derivative

derivative = polyder(P) ​%differentiates polynomial

% Solutions

solution = roots(P) ​%finds polynomial roots

% x values from 2 to 5

x = 2:5;

y = f(x)

% Finding area using quad

area1 = quad(f,2,5) %numerically evaluate the integral from 2,5

%Finding area using traps

area2 = trapz(y) %computes approximation of y via trapezoidal method

with unit spacing

syms ​x f
f = x^3 + 2*x^2 - 4*x + 3 ​%defining f
derivative2 = diff(f) ​%difference and approximate derivative
area = int(f,2,5) ​% computes definite integral between 2 and 5

IMAGES AND TABLES (HW14)

HOMEWORK 12
Overview: ​In homework 12 ​part one​ two equations are created one of degree 3 and 4. These are
then plotted on a 2x1 subplot with a line of best fit. In ​part two​ pumps and deaths are loaded into
the script and used to create a meshgrid with a colorbar showing the pumps and their number as
well as the deaths. In ​part three ​ four figures are created that contain graphs of sqrt x, x^2, lnx,
y=e^x. In ​part four​ a 3D plot, pie chart, and bar graph are created based off of data from
turbine.dat. In ​part two​ and AVI file is created that creates a video animation.
Skills:

- Polyfit, polyval, cell2mat, meshgrid, set, colorbar, feval, bar, pie

% HW 12

%November 15th

%Bella Barbera

clc; clearvars; close ​all

%% Section 1: Subplots & Best Fit Curves

figure(1),clf ​%create figure, clear figure
hold ​on ​ ​%add to plot

%raw data

time = 0:3:24; ​%time range (0 to 24 seconds)
flow = [800 980 1090 1520 1920 1670 1440 1380 1300]; ​%flow in cubic
feet of water (data)

%plotting the data (dots)

coeff3 = polyfit(time,flow,3); ​%finds coefficients
bestfit3 = polyval(coeff3,time); ​%y values of line of best fit
subplot(1,2,1) ​%creating plot of the two graphs by into an m-by-n
matrix of small axes, selects the p-th axes for the current plot

(m,n,p)

plot(time,flow, ​'ko' ​) ​%plotting the data
equation1 = sprintf(​'Mystical River Flow Rate\n Q(t) = %.1ft^3 +
%.1ft^2 + %.1ft + %.1f' ​, coeff3(1), coeff3(2), coeff3(3), coeff3(4));
%displaying the equation

%best fit line 3rd power (dashed line)

hold ​on ​ ​%add to graph
plot(time,bestfit3, ​'b--' ​, ​'linewidth' ​,1) ​%plotting dashed line
axis([0 25 600 2000]) ​%setting axes
xlim([-1,25]) ​%sets limit on x-axis

%axis labels

xlabel(​'Time (hr)' ​)
ylabel(​'Flow rate (m^3/s)' ​)

title(equation1)

legend(​'Measured' ​, ​'Best fit' ​)

%best fit line 4th power (dashed line and dots)

coeff4 = polyfit(time,flow,4); ​%finds coefficients of equation
bestfit4 = polyval(coeff4,time); ​%y values of line of best fit
subplot(1,2,2) ​%plot two plots
plot(time,flow,'ko') ​%plot data (dots)
axis([0 25 600 2000]) ​%set axes
xlim([-1,25]) ​%sets limits on x-axis
hold ​on ​ ​%add to graph
plot(time,bestfit4, ​'b--' ​, ​'linewidth' ​,1) ​%plot dashed line
equation2 = sprintf(​'Mystical River Flow Rate\n Q(t) = %.1ft^4 +
%.1ft^3 + %.1ft^2 + %.1ft + %.1f' ​, coeff4(1), coeff4(2), coeff4(3),
coeff4(4),coeff4(5)); ​%displaying equation

%axis labels

xlabel(​'Time (hr)' ​)
ylabel(​'Flow rate (m^3/s)' ​)
title(equation2)

legend(​'Measured' ​, ​'Best fit' ​)

%% Section 2: Voronoi diagram (Thiessen Polygons): Cholera Dataset

pumpsfid = fopen(​'pumps.txt' ​, ​'r' ​); ​%opening pumps
pumps = textscan(pumpsfid, ​'%f , %f','Headerlines' ​,1); ​%loading in
pumps

fclose(pumpsfid); ​%closing pumps file
pumps = cell2mat(pumps); ​%converting each cell array into a matrix of
doubles

deathsfid = fopen(​'deaths.txt' ​, ​'r' ​); ​%opening deaths
deaths = textscan(deathsfid, ​'%f , %f','Headerlines' ​,1); ​%loading in
deaths

fclose(deathsfid); ​ %closing file deaths
deaths = cell2mat(deaths); ​%converting each cell array into a matrix
of doubles

closestpump = zeros(20,20); ​%defining closest pump as a 20x20 matrix
of zeros

for ​ rows = 1:20 ​%finding the pump closest to each pixel in the 20x20
square

 ​for ​ columns = 1:20 ​%for columns 1-20
 dist = sqrt((columns - pumps(:,1)).^2 + (rows - pumps(:,2)).^2);

%computing the distances from each pixel to all pumps

 [~,closestpump(rows,columns)] = min(dist); ​%assigning the index
of the closest pump

 ​end
end

figure(1),clf ​%creating figure 2

%plotting the data

X = 1:20;

Y = 1:20;

[X,Y] = meshgrid(X,Y); ​%produces rectangular grid
colormap(jet) ​%colors plot
pcolor(X,Y,closestpump) ​%creates a checkerboard matrix plot of
closest pump

shading ​interp ​ ​%controls the color shading by setting it to
interpolated

hold ​on ​ ​%add to figure

grid on ​%grid on
for ​ k = 1:length(pumps) ​%plotting all pumps
 plot1 =

plot(pumps(k,1),pumps(k,2),'w.','markersize',50,'linewidth',1);

%plotting pumps as white circles

text(pumps(k,1),pumps(k,2),num2str(k), ​'fontsize' ​,12, ​'color' ​, ​'k' ​, ​'line
width' ​,7) ​%plotting numbered pumps
end

plot2 = plot(deaths(:,1),deaths(:,2), ​'rx' ​, ​'linewidth' ​,1); ​%plotting
deaths as x's

axis([4 20 4 20]) ​%setting axes

%labels

title(​'John Snow''s Cholera map,1854' ​)
xlabel(​'Easting' ​)
ylabel(​'Northing' ​)
leg = legend([plot1 plot2], ​'Pumps' ​, ​'Deaths' ​);
set(leg, ​'color' ​,[51 128 240]/255) ​%set object properties
colorbar ​%display colorbar

%% Section 3: Log Plots

x = .05:.1:10; ​%assign x, a vector of values from 0.05 to 10
sqr = @(x)(x.^2); ​%define sqr as a function
functions = {@sqrt,sqr,@log,@exp}; ​%define functions a cell array of
function handles

graphs = {@plot,@semilogx,@semilogy,@loglog}; ​%cell array of
functions for each subplot

title1 = { ​'\surdx' ​, ​'x^2' ​, ​'lnx' ​, ​'e^x' ​}; ​%assign a cell array for the
title strings

for ​ k = 1:length(functions) ​% for length of all of functions
 figure ​%create figure
 ​for ​ j = 1:length(functions) ​%for length of all functions
 subplot(2,2,j) ​%make new 2x2 subplot, then assign current
graph position j

 y = feval(functions{k},x); ​%execute the functions by
substituting in x

 feval(graphs{j},x,y) ​%executes function which is to graph x
and y

 ​if ​ j == 1 ​%put a title on the first subplot in every figure
 title([​'y = ' ​ title1{k}])
 ​end
 end

end

%% Section 4: Graphing Turbine Data

clc; clearvars; ​%clear workspace and command window

load ​'turbine.dat' ​ ​%load turbine data

%assigning x y z for the graph

x = turbine(:,1);

y = turbine(:,2);

z = turbine(:,3);

%plotting the data

subplot(2,2,1)

plot3(x,y,z, ​'ko' ​)
grid ​on

%labels

title(​'Wind-Generated Electricity Production' ​)
xlabel(​'Blade Diameter (ft)' ​)
ylabel(​'Wind Velocity (mph)' ​)
zlabel(​'Electricity (kwh/yr)' ​)

% Plotting the Pie Chart

mask1 = x == 5; ​%assign mask, will be used to index when the diameter
is 5

mask2 = x == 10;

diameter5 = sum(z(mask1)); ​%index into output using mask to parse
data by blade size

diameter10 = sum(z(mask2));

diameters = [diameter5 diameter10]; ​%actually create the pieplot

%plotting the data

subplot(2,2,2) ​%plotting the pieplot in the second subplot place

pie(diameters)

title(​'Percentage of Electricity Produced by Blade Size' ​) ​%titles
legend(​'5ft Blade' ​, ​'10ft Blade' ​, ​'location' ​, ​'southwest' ​) ​%legends

%Plotting the bar graph

mask3 = y == 5;

mask4 = y == 10;

mask5 = y == 15;

mask6 = y == 20;

windspeed5 = z(mask3);

windspeed10 = z(mask4);

windspeed15 = z(mask5);

windspeed20 = z(mask6);

subplot(2,2,3) ​%putting bar chart in third subplot place
bar([windspeed5 windspeed10 windspeed15 windspeed20]') %creating bar

chart

ylabel(​'Kilowatt-hours per year' ​) ​%labels
xlabel(​'Windspeed' ​)
title(​'Wind-Generated Electricity Production' ​)
set(gca, ​'xticklabel' ​,{ ​'5mph' ​, ​'10mph' ​, ​'15mph' ​, ​'20mph' ​})
legend(​'5ft Blade' ​, ​'10ft Blade' ​, ​'location' ​, ​'northwest' ​)

%% Bella Barbera

% November 27th 2017

%AVI file

%%

%creating function ani2avi so we can place two helper functions in

the same file

function ​ ani2avi

%transformation matrices

refx = [-1 0; 0 1]; ​%x coordinates
refy = [1 0; 0 -1]; ​%y coordinates
ref0 = refx*refy; ​%used to reflect coordinates through the origin

%defining anonymous functions

scale = @(sx,sy)([sx 0; 0 sy]); ​%define function scale which scales
up or down

shearx ​ = @(k)([1 k;0 1]); ​%define the functions shearx/y which shear
the plot in the y or x direction (slanting)

sheary ​ = @(k)([1 0;k 1]);
rotccw = @(t)([cos(t) sin(t); -sin(t) cos(t)]); ​%rotates
counterclockwise about the origin

%loading mypts

load ​mypts1.mat

pts = [X;Y]; ​%define points as the combination of x and y from
mypts.mat

%saving as animate.avi

vidObj = VideoWriter(​'animate.avi' ​);
vidObj.FrameRate = 1; ​%defining frame rate of the video
open(vidObj); ​%opening file for writing

%updating pts

makefig1 ​%creating figure to display points on
helper(pts,vidObj); ​%plot original points/add to video
pts = scale(.4,.6)*pts;

helper(pts,vidObj); ​%
pts = shearx(3)*pts;

helper(pts,vidObj);

pts = sheary(-1)*pts; ​%reflect over y-axis, plot, add to video
helper(pts,vidObj);

pts = rotccw(35)*pts; ​%rotate all points 35 degrees, plot, add to
video

helper(pts,vidObj);

pts = scale(2,1)*pts;

helper(pts,vidObj);

pts = sheary(3)*pts;

helper(pts,vidObj);

plotme(pts);

close(vidObj);

end

%creating plotme and helper functions

function ​ h = plotme(pts)
h = plot(pts(1,:),pts(2,:), ​'bp' ​, ​'markersize' ​,30); ​%plot x,y
coordinates given in points/ assign plot handle

end

function ​ helper(pts,obj)
h = plotme(pts);

currFrame = getframe;

writeVideo(obj,currFrame);

End

TABLES AND IMAGES

